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I. INTRODUCTION

Most high-resolution methods, such as multiple signal
classification (MUSIC) [1], estimation of signal
parameters via rotational invariance techniques (ESPRIT)
[2], method of direction estimation (MODE) [3], and
principal-singular-vector utilization for modal analysis
(PUMA) [4, 5], for direction-of-arrival (DOA) estimation
require knowledge of the source number. However, this
number is unknown a priori and instead needs to be
estimated. As a result, source enumeration has been an
active and fundamental topic in array processing [6–9].
Source enumeration algorithms vary from hypothesis
testing [10] to information theoretic criterion (ITC)
[11–14]. Basically, these methods have been developed for
the classical asymptotic situation in which the number of
antennas is fixed while the number of samples or
snapshots tends to infinity. The Gaussian model well suits
this condition, and the likelihood-rooted ITCs are the
standard schemes for source number detection because the
sample size is large enough. In the general asymptotic
scenario, however, the number of antennas m tends to
infinity at the same rate as the number of snapshots n,
meaning that m can be comparable to or even larger than
n, posing a challenge to estimate the source number
accurately and efficiently. This general asymptotic case is
relevant to real-world applications. As an example, by
properly employing the waveform diversity in
multiple-input, multiple-output (MIMO) radar [15–17],
we can obtain a virtual array with an extended aperture in
which the number of antennas is considerably increased,
probably close to or even larger than the number of
snapshots. However, it has been pointed out in [18] that
the general asymptotic case is able to provide a more
accurate description for practical scenarios in which the
number of snapshots and the number of antennas are finite
with comparable values.

To correctly enumerate the source signals using
a large antenna array with small samples, several
methodologies have been developed, including Akaike’s
information criterion (AIC) in light of the random matrix
theory (RMT) [7], the threshold testing (TT) derived from
the RMT [19], and the minimum description length
(MDL) based on the linear shrinkage (LS) of noise
subspace components [9], which are called the RMT-AIC,
RMT-TT, and LS-MDL, respectively. As addressed in
[19], although RMT-AIC [7] can enumerate the sources
for the general asymptotic region, its consistency cannot
be guaranteed. Unlike the RMT-AIC approach, LS-MDL
[9] is able to accurately detect the source number and
offers consistency in the general asymptotic scenario.
Nevertheless, the ITC-like methods have a relatively large
detection threshold, thereby requiring a higher
signal-to-noise ratio (SNR) than that of the threshold-like
enumerators to obtain the same detection performance. As
a result, the RMT-TT method [19] becomes an alternative
candidate for the general asymptotic region. The RMT-TT
method is based on testing the significance of a single
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weakest signal sample eigenvalue. Given the noise
variance, the RMT-TT approach is able to attain the
asymptotic limit of detection. Unfortunately, the noise
variance cannot be known a priori and instead needs to be
estimated. The uncertainty in the noise variance estimation
inevitably degrades the performance of the RMT-TT
algorithm, which can be confirmed in the simulation
results of Section V. Therefore, it is worthwhile to devise
an effective testing method that is free of the uncertainty
in the estimated noise variance for the general asymptotic
region.

In this paper, we address this challenging source
enumeration problem by means of the property of the LS
coefficients. The LS technique can be used to efficiently
improve the estimate of the covariance matrix, which has
been widely investigated in the literature [20–22]. We
show that the LS coefficients associated with the noise
subspace almost surely converge to one while the
coefficients corresponding to the signal subspace are
almost surely strictly lower than one in the general
asymptotic situation. Moreover, the noise shrinkage
coefficients turn out to be asymptotically Gaussian
distributed, paving the way for accurate computation of
the theoretical threshold for source number detection.
Using the properties of the LS coefficients, along with the
asymptotic Gaussian distribution of the noise shrinkage
coefficients, the threshold-like testing and heuristic
schemes are derived for accurate source number detection.
The threshold-like approach is based on the distribution of
the noise shrinkage coefficients to determine the decision
threshold, whereas the heuristic method is heuristically
developed by using the consistent equality among the
noise shrinkage coefficients, which are significantly larger
than the signal shrinkage coefficients. We refer to them as
shrinkage coefficient–based detectors (SCDs). Because
the threshold-based SCD (SCDthre) is able to accurately
determine the theoretical threshold without the need for
noise variance, its detection performance is not affected by
the uncertainty in the noise power estimation.
Consequently, the property of the constant false-alarm rate
(CFAR) can be achieved. Moreover, the iterative
procedure in [19] for estimating the noise variance is
avoided, significantly reducing its computational
complexity. However, the noise shrinkage coefficients are
usually significantly larger than the signal shrinkage
coefficients. By means of heuristic testing, the noise
shrinkage coefficients can be accurately separated from
the signal shrinkage coefficients, leading to a new
heuristic shrinkage coefficient–based detector
(SCDheur).

The remainder of the paper is organized as follows.
The data model is presented in Section II. The motivation
of the proposed methods, calculation of the LS
coefficients, and SCD approaches are provided in Section
III. Simulation results are given in Section IV. Finally,
conclusions are drawn in Section V.

Throughout this paper, we use boldface uppercase
letters to denote matrices, boldface lowercase letters for

column vectors, and lowercase letters for scalar quantities.
Superscripts (·)T and (·)H represent transpose and
conjugate transpose, respectively. In this paper, â denotes
the estimate of a, E{a} is the expected value of a, and
tr(A) and ‖A‖ are the trace and Frobenius norm of A,
respectively. Furthermore, Im is the m × m identity
matrix and 0m is the m × 1 zero vector. We use
x ∼ CN (μ, �) (N (μ, �)) to indicate that x follows a
complex (real) Gaussian distribution with mean μ and
covariance matrix �.

II. PROBLEM FORMULATION

Consider an array of m antennas receiving d
narrowband incoherent source signals {s1(t), . . . , sd(t)}
from distinct directions {θ1, . . . , θd}. Assume the sources
and the array are in the same plane. The tth snapshot
vector of the array output is written as

xt = Ast + wt , t = 1, · · · , n (1)

where

xt = [x1(t), · · · , xm(t)]T

A = [a(θ1), · · · , a(θd )]

st = [s1(t), · · · , sd (t)]T

wt = [w1(t), · · · , wm(t)]T .

are the observed snapshot vector, steering matrix, signal
vector, and noise vector, respectively. Here, a(θ i),
i = 1, . . . , d, is the steering vector, where θ i is the DOA of
the ith source, d is the unknown number of sources, m is
the number of antennas with d < m, and n is the number of
snapshots. Unless stated otherwise, the signals are
assumed to be independent and identically distributed
(IID) complex Gaussian, i.e., st ∼ CN (0d, �s), in which

�s
�= E[stsH

t ] ∈ C
d×d is of full rank. Furthermore, the

noise wt is assumed to be an IID complex Gaussian vector
with a mean of zero and the covariance τ Im, i.e.,
wt ∼ CN (0m, τ Im), which is independent of st.

With the assumptions given earlier, the observed
samples can be taken as an IID Gaussian vector, i.e.,
xt ∼ CN (0m, �). Here, � as the population covariance
matrix, which is calculated as

� = E[xtxH
t ] = A�sAH + τ Im. (2)

Recall that the signals are incoherent and d < m,
meaning that �s is nonsingular and A is of full column
rank. In practice, however, only the sample covariance
matrix (SCM) is accessible, which is calculated by
S = (1/n)

∑n
t=1 xtxH

t . Consequently, our task in this work
is to infer the source number d from the noisy observations
{x1, . . . , xn} for m, n → ∞ and m/n → c, with c ∈ (0, ∞)
as a constant number.
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Fig. 1. Marčenko-Pastur distribution for eigenvalues of noise-only
SCM with unity noise variance.

III. SOURCE ENUMERATION BASED ON THE LS
COEFFICIENT

A. Motivation

Carrying out the eigenvalue decomposition (EVD) on
the population covariance matrix �, we obtain the
population eigenvalues as

l1 ≥ · · · ≥ ld > ld+1 = · · · = lm = τ. (3)

Let u1, . . . , um be the corresponding population
eigenvectors, which can be correctly decomposed into two
orthogonal subspaces; i.e., {u1, . . . , ud} spans the signal
subspace, while {ud + 1, . . . , um} spans the noise subspace
provided that the source number d is known a priori. The
subspace-based estimators, such as MUSIC [1], ESPRIT
[2], MODE [3] and PUMA [4, 5], can be subsequently
applied for high-resolution DOA estimation. However, d is
unknown and needs to be estimated. To facilitate this
decomposition, we use the presumed source number k
∈[0, m −1] instead. With the multiplicity of the smallest
eigenvalues, i.e.,

ld+1 = · · · = lm (4)

it is easy to determine the source number d. However, the
noise population eigenvalues cannot be accessed in
practice. Instead, only the noise sample eigenvalues of S
can be obtained, and they satisfy

�d+1 ≥ · · · ≥ �m (5)

where the inequalities hold with a probability of one. For n
→ ∞, while m remains unchanged, the maximum
likelihood (ML) estimates �i(i = 1, · · · , m) are the
efficient estimates of li (i = 1, . . . , m). Nevertheless, these
sample eigenvalues are usually rather inaccurate for the
general asymptotic situation in which m,n → ∞ and m/n
→ c. It was revealed in [23] that the noise sample
eigenvalues asymptotically obey the half-circle
distribution or Marčenko-Pastur distribution, which is
plotted in Fig. 1, where g(x) is the probability density
function of random variable x. Hence, enumerating the

sources via the eigenvalues of the SCM cannot lead to
satisfactory detection performance in this scenario. One
possible choice is to accurately determine the distribution
of the sample eigenvalues by means of the
Marčenko-Pastur distribution and then use the
threshold-like testing for source enumeration, e.g.,
RMT-TT [19]. However, this method suffers performance
degradation because of the uncertainty in the noise
variance estimation. Another possible choice is the ITCs,
including the AIC and MDL approaches, which are good
candidates for adaptive source enumeration. Although the
ITC schemes can properly work in the classical
asymptotic condition, they may be inefficient in the
general asymptotic case because the probability model
cannot be accurately approximated by the relatively finite
sample size, which is possibly comparable with the
number of antennas. It thereby calls for proposals that are
able to provide reliable detection of the source number in
the general asymptotic scenario at low SNRs. To achieve
this goal, we employ the LS technique to accurately
compute a sequence of shrinkage coefficients by means of
the identity structure of the noise covariance matrix. The
shrinkage coefficients are then used to determine the
source number.

B. LS Coefficient

Let
∑(k)

N = diag(lk+1, · · · , lm) and S(k)
N = diag

(�k+1, · · · , �m), which corresponds to the noise subspace
covariance matrix under the assumption that k is the
presumed source number. It follows from the results of
Anderson [24] that S(k)

N is the unbiased ML estimate of
�

(k)
N in the classical asymptotic situation when n → ∞

and m is fixed. However, this unbiased estimate has a large
variance and is usually ill conditioned for m,n → ∞ and
m/n → c. In contrast to the ML estimate, a structured
estimate ukIm−k with μk = 1/(m − k)

∑m
i=k+1 λi is able to

reduce the variance at the expense of increasing the bias.
However, �

(k)
N has the structure of the identity matrix for k

≥ d but is a diagonal matrix for k < d. Consequently, our
aim is to derive an optimal estimate of �

(k)
N in the sense of

the minimum mean square error (MSE) by means of the
LS technique along with the IID Gaussian assumption of
observations. To this end, we consider the following
constrained minimization of the MSE:

min
α(k)

g
(
α(k)

) �= E

[∥∥R(k) − �
(k)
N

∥∥2
]

s.t R(k) = α(k)μkIm−k + (1 − α(k))S(k)
N

(6)

where α(k) ∈ [0,1] denotes the shrinkage coefficient [20].
The LS estimate R(k) is obtained by shrinking S(k)

N toward
μkIm−k, with the effect of a tradeoff between the bias and
the variance. Thus, minimizing the MSE in (6) results in
an accurate estimate of �

(k)
N for m,n → ∞ and m/n → c.

Using ‖A + B‖2 = ‖A||2 + ‖B‖2 + 2tr[Re(ABH)]
for A, B ∈ C

m×m, the MSE cost function in (6) can be
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easily computed as

g
(
α(k)) = E

[∥∥α(k)μkIm−k + (
1 − α(k)) S(k)

N − �
(k)
N

∥∥2
]

= E

[∥∥α(k)
(
μkIm−k − �

(k)
N

)
+ (

1 − α(k)) (S(k)
N − �

(k)
N

)∥∥2
]

= (
α(k)

)2
E

[∥∥μkIm−k − �
(k)
N

∥∥2
]

+ (
1 − α(k)

)2
E

[∥∥S(k)
N − �

(k)
N

∥∥2
]

+ α(k) (1 − α(k)) 2E

[
tr

[(
μkIm−k − �

(k)
N

) (
S(k)
N − �

(k)
N

)H
]]

. (7)

Setting the derivative of g(α(k)) to zero and recalling ‖A‖2 = tr[AAH], we obtain the oracle estimate of α(k):

α
(k)
O =

E

[
tr

[(
μkIm−k − S(k)

N

) (
�

(k)
N − S(k)

N

)H
]]

E

[∥∥S(k)
N − μkIm−k

∥∥2
]

=
μktr

(
�

(k)
N

)
− E

[
tr
(

S(k)
N �

(k),H
N

)]
− μkE

[
tr
(

S(k)
N

)]
+ E

[
tr
(

S(k)
N S(k),H

N

)]
(m − k)μ2

k − 2μkE

[
tr
(

S(k)
N

)]
+ E

[
tr
(

S(k)
N S(k),H

N

)]

=
E

[
tr
(

S(k)
N S(k),H

N

)]
− tr

(
�

(k)
N �

(k),H
N

)
E

[
tr
(

S(k)
N S(k),H

N

)]
− (m − k)μ2

k

= E
[

1
m−k

∑m
i=k+1 �2

i

] − 1
m−k

∑m
i=k+1 λ2

i

E
[

1
m−k

∑m
i=k+1 �2

i

] −
(∑m

i=k+1 λi

m−k

)2 . (8)

For the Gaussian observations, it follows from [25] that

1

m − k

m∑
i=k+1

λi = E

[
1

m − k

m∑
i=k+1

�i

]
(9)

1

m − k

m∑
i=k+1

λ2
i = 1

n + 1

(
nE

[
1

m − k

m∑
i=k+1

�2
i

]

− (m − k)

(
E

[
1

m − k

m∑
i=k+1

�i

])2
⎞
⎠ .

(10)

Substituting (9) and (10) into (8) yields

α
(k)
O = E

[
1

m−k

∑m
i=k+1 �2

i

]+(m−k)
(
E
[

1
m−k

∑m
i=k+1 �i

])2

(n+1)
(
E
[

1
m−k

∑m
i=k+1 �2

i

]−
(
E

[∑m
i=k+1 �i

m−k

])2) .

(11)

An important observation herein is that when the
presumed source number is equal to or larger than the true
source number, i.e., k ≥ d, all presumed noise sample
eigenvalues {�i}mi=k+1 are the true noise sample
eigenvalues. As m,n → ∞ and m/n → c, the first- and
second-order moments of the true noise sample

eigenvalues have the following convergence:

1

m − k

m∑
i=k+1

�i
m.s−−−−→ E

[
1

m − k

m∑
i=k+1

�i

]
(12)

1

m − k

m∑
i=k+1

�2
i

m.s.−−−−→ E

[
1

m − k

m∑
i=k+1

�2
i

]
(13)

where
m.s.−−−−→ means convergence in the mean square.

The proofs of (12) and (13) are provided in the appendix.
Substituting (12) and (13) into (11) yields the consistent
estimate of α̂

(k)
O :

α̂(k)
c =

1
m−k

∑m
i=k+1 �2

i + (m − k)
(

1
m−k

∑m
i=k+1 �i

)2

(n + 1)

(
1

m−k

∑m
i=k+1 �2

i −
(∑m

i=k+1 �i

m−k

)2
) .

(14)

Because α̂(k)
c can be larger than one, we use

α̂(k) = min(α̂(k)
c , 1) [20] rather than α̂(k)

c as the estimated
shrinkage coefficient. The shrinkage coefficient has a
different behavior from that of k < d because the signal
sample eigenvalues, i.e., �k, · · · , �d , do not have limiting
values in (12) and (13), thereby providing a good indicator
for source enumeration. Compared with the LS-MDL
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approach [9], which employs LS to improve the estimate
of the eigenvalues, the methods devised in this paper rely
on the distribution of the shrinkage coefficient and the
difference between the signal and noise shrinkage
coefficients. Because this distribution can be accurately
determined and the gap between the signal and noise
shrinkage coefficients is usually quite large, the proposed
source enumerators are able to provide the superior
performance.

C. Threshold Testing for Source Enumeration

Let H0 and H1 be the hypotheses of at most
k sources and at least k + 1 sources, respectively. For
hypothesis H0, �k+1, · · · , �m, are the noise sample
eigenvalues. Moreover, it follows from (14) that
α̂(k)(k = d, · · · , m − 1) corresponds to the noise shrinkage
coefficient because it is determined by the true noise
eigenvalues, whereas α̂(k)(k = 0, · · · , d − 1) corresponds
to the signal shrinkage coefficient because it is dominated
by the signal eigenvalues. By determining the fluctuation
of α̂(k) under H0, we can calculate the decision threshold
according to a prescribed probability of false alarm.
Moreover, α̂(k) under H1 is smaller than that under H0.
Consequently, source enumeration amounts to making the
following decision:

α̂(k)
H0
>
<

H1

ηk, k = 0, · · · , m − 1 (15)

where ηk is the prescribed threshold, which needs to be
determined and must be independent of the noise variance
so that the CFAR property can be achieved. To correctly
calculate the threshold for source number detection, it is
important to determine the distribution of the shrinkage
coefficients for the situation of k ≥ d, which corresponds
to the null hypothesis H0. To this end, we need the
following results.

PROPOSITION 1 The shrinkage coefficient α̂(k) with
k ≥ d asymptotically obeys the Gaussian distribution as
m,n → ∞ and m/n → c. That is,

α̂(k) D−−−→N (νk, σ
2
k ) (16)

where
D−−−→ denotes convergence in distribution and

νk = c + (m − k + 1)

c(n + 1)
(17)

σ 2
k = 2(m − k + 1)2

c2(n + 1)2(m − k)2
. (18)

PROOF Setting x = 1
m−k

∑m
i=k+1 �i, y = 1

m−k

∑m
i=k+1 �2

i ,

and zk = f (x, y)
�= α̂(k), it follows from (14) that

f (x, y) = y + (m − k)x2

(n + 1)
(
y − x2

) . (19)

To determine the mean and variance of zk, we resort to the
delta method. In particular, by means of the Taylor series
expansion of f(x, y) around f(x0, y0), with x0 = E[x] and
y0 = E[y], we obtain

f (x, y) = f (x0, y0) + ∂fx(x0, y0)(x − x0)

+ ∂fy(x0, y0)(y − y0) + · · · (20)

where ∂fx(x0, y0) denotes the partial derivative with
respect to x. It follows from Lemma 1 in the appendix that
x0 = τ and y0 = τ 2(1 + c). We then easily obtain

v �= [x − x0, y − y0]T = [x − τ, y − τ 2(1 + c)]T and
approximate (20) as

f (x, y) ≈ νk + ∇T
k v (21)

where

νk
�= f (x0, y0) = y0 + (m − k)x2

0

(n + 1)
(
y0 − x2

0

) = c + (m − k + 1)

c(n + 1)

(22)

∇k
�= [

∂fx(x0, y0), ∂fy(x0, y0)
]T

= m − k + 1

(n + 1)c2

[
2 (1 + c)

τ
, − 1

τ 2

]T

. (23)

As m,n → ∞ and m/n → c, substituting zk = f(x, y)
and νk = f(x0, y0) into (21) and recalling that zk has the
Gaussian distribution in (16), we have

zk − f (x0, y0)
D−−−→N

(
0, σ 2

k

)
(24)

where

σ 2
k = ∇T

k D∇k

(m − k)2
(25)

and

D =
[

τ 2c 2τ 3c(1 + c)

2τ 3c(1 + c) 2τ 4c(2c2 + 5c + 2)

]
. (26)

Substituting (23) and (26) into (25) leads to (18). This
completes the proof of Proposition 1.

Given a false-alarm level, say, ε, it follows from
Proposition 1 that

Prob (H1|H0) = Prob

(
α̂(k) − νk

σk

< η̃k

∣∣∣∣H0

)
= 1 − Q(η̃k)

�= ε (27)

where η̃k represents the threshold for the Gaussian
distribution and Q(η̃k) = ∫ ∞

η̃k
1/

√
2π exp(−t2/2)dt . As a

result, the threshold for the shrinkage coefficient turns out
to be

ηk = Q−1(1 − ε)σk + νk

=
√

2(m − k + 1)

c(n + 1)(m − k)
Q−1(1 − ε) + c + (m − k + 1)

c(n + 1)
.

(28)

It is shown in [7, 26] that the limiting parameter

c = limm,n → ∞ m/n can be replaced by cm
�= m/n in
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Fig. 2. Shrinkage coefficient versus presumed source number, showing
10 sources with DOAs: [0,6.67, 13.33, 20.00, 26.67, 33.33, 40.00, 46.67,

53.33, 60.00]◦. (a) m = 30, n = 50, d = 10, and SNR = 0 dB.
(b) m = 30, n = 100, d = 10, and SNR = −5 dB.

practical applications. As a result, the SCDthre approach
can be used to obtain the source number estimate, i.e.,

d̂ = max
k=0,···,m̄−1

{ik} (29)

where m̄ = min(m, n) and

ik =
{

k α̂(k) < ηk

0 α̂(k) ≥ ηk.
(30)

D. Heuristic Approach to Source Enumeration

Although the SCDthre method is able to accurately
determine the theoretical threshold for source number
detection, it cannot efficiently employ the information
inherent in the distance between the signal and noise
shrinkage coefficients. The noise shrinkage coefficients
are usually separated by a large gap from the signal
shrinkage coefficients, as illustrated in Fig. 2. An intuition
can be attained from (6), which agrees well with the
results in Fig. 2. That is, the signal shrinkage coefficient is
a small number close to zero, while the noise shrinkage
coefficient is close to one. In particular, for k < d, the
unknown true covariance matrix �

(k)
N is diagonal but not

identical. To minimize the MSE in (6), we need to assign a
weight for the identity matrix that is as small as possible,

thereby indicating that α(k) should be a small number. In
contrast, for k ≥ d, �

(k)
N has the identity structure, calling

for a large weight for μkIm−k in (6). This in turn implies
that α(k) approaches one. Consequently, using this gap
between the signal and noise shrinkage coefficients, we
can significantly improve the detection performance.

PROPOSITION 2 As m,n → ∞ and m/n → c, the noise
shrinkage coefficients α̂(k)(k = d, · · · , m − 1) tend to one
almost surely:

α̂(k) = 1, k = d, · · · , m − 1 (31)

whereas the signal shrinkage coefficients
α̂(k)(k = 0, · · · , d − 1) are almost surely smaller than one
in large SNR region (�i/τ � 1, i = 1, · · · , d) and strictly
lower than one in small SNR region
(�i/τ 
 m, i = 1, · · · , d), i.e.,

α̂(k)

{

 1, �i/τ � 1, i = 1, · · · , d
< 1, �i/τ 
 m, i = 1, · · · , d.

(32)

PROOF It follows from (14) that the shrinkage coefficient
can be rewritten as

α̂(k) =

1
m−k

∑m
i=k+1 �2

i(
1

m−k

∑m
i=k+1 �i

)2 + (m − k)

(n + 1)

(
1

m−k

∑m
i=k+1 �2

i(
1

m−k

∑m
i=k+1 �i

)2 − 1

)

�= γk + (m − k)

(n + 1) (γk − 1)
(33)

where

γk =
1

m−k

∑m
i=k+1 �2

i(
1

m−k

∑m
i=k+1 �i

)2 . (34)

For k ≥ d and m,n → ∞ with m/n → c, it readily follows
from (34) that

γk = τ 2(1 + c)

τ 2
= 1 + c (35)

which, when substituted into (33), leads to

α̂(k) = 1 + c + (m − k)

(n + 1)c
→ 1 (36)

for k = d, . . . , m − 1, along with m,n → ∞ and m/n → c.
Now consider the signal shrinkage coefficient that

corresponds to the situation of k < d. As m,n → ∞ and
m/n → c, it follows from (33) that

α̂(k) = 1

n + 1
+

m−k+1
n+1

γk − 1
a.s−−−−→ c

γk − 1
. (37)

where
a.s.−−−−→ means almost surely convergence.

However, as m,n → ∞ with m/n → c, it is indicated in [7]
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that for i = 1, . . . , d,

�i
a.s−−−−→

⎧⎨
⎩

li(1+ τc/(li − τ ))
�= l̃i , if li > τ (1 + √

c)

τ (1 + √
c)2 �= lDET, if li ≤ τ (1 + √

c).

(38)

At high SNRs, it is clear that li >τ (1+√
c),

i=1, · · · , d. For m,n → ∞ and m/n → c, it is easy to
obtain

γk = (m − k)

∑d
i=k+1 �2

i + ∑m
i=d+1 �2

i(∑d
i=k+1 �i + ∑m

i=d+1 �i

)2

a.s.−−−−→ m

∑d
i=k+1 l̃2

i + mτ 2(1 + c)(∑d
i=k+1 l̃i + mτ

)2

(39a)

= m

∑d
i=k+1 ρ2

i + m(1 + c)(∑d
i=k+1 ρi + m

)2 (39b)

where ρi = l̃i/τ corresponds to the SNR. For the high
SNR case, i.e., �i/τ → ρi � 1,

∑d
i=k+1 ρi cannot be

ignored when compared with m. This indicates that∑d
i=k+1 ρi = O(m) and

∑d
i=k+1 ρ2

i = O(m2), which,
when inserted into (39b), lead to

γk
a.s.−−−−→ m

c1m
2 + m(1 + c)

(c2m + m)2 → c1

(c2 + 1)2
m � 1 (40)

with c1 and c2 as constant numbers. Substituting (40) into
(37) yields

α̂(k) 
 1. (41)

For the low SNR case, we have �k+1/τ 
 m and
�d

a.s.−−−−→ lDET. Recalling that �k+1 ≥ · · · ≥ �d , it follows
from (38) and (39a) that

γk
a.s.−−−−→ m

d∑
i=k+1

�2
i + mτ 2(1 + c)

(
d∑

i=k+1
�i + mτ

)2

> m
(d − k)�2

d + mτ 2(1 + c)

((d − k)�k+1 + mτ )2

a.s.−−−−→ 1 + c.

(42)

Substituting (42) into (37) leads to

α̂(k) < 1, (a.s.). (43)

This completes the proof of Proposition 2.
It follows from Proposition 2 that when k varies from 0

to m − 1, the noise shrinkage coefficients asymptotically
converge to one while the signal shrinkage coefficients are
asymptotically smaller than one at large SNRs and strictly
smaller than one at small SNRs. As a result, similar

to [27, 28], the source number can be determined by
SCDheur:

d̂ = max
k=0,···,m̄−1

{jk} (44)

where

jk =

⎧⎪⎪⎨
⎪⎪⎩

k α̂(k) <
Dn

m̄

∑m̄

i=1
α̂(i)

0 α̂(k) ≥ Dn

m̄

∑m̄

i=1
α̂(i)

(45)

and Dn = κ/log(n). Here, κ is a constant number close to
log(n), which is the natural logarithm of n.

REMARK Both the SCDheur and SCDthre algorithms
involve the computations of the SCM and EVD, which
require around O(m2n + m3) flops. Moreover, it is
indicated in (30) and (45) that the constructions of the
source enumerators for SCDheur and SCDthre only rely on
the shrinkage coefficient, which turns out to be a simple
function of the sample eigenvalues, as shown in (14).
Hence, the computational complexity in source
enumerator construction can be ignored and SCDheur or
SCDthre needs merely about O(m2n + m3) flops.

IV. SIMULATION RESULTS

A. Accuracy of the Theoretical Threshold for SCDthre

In this simulation, we evaluate the accuracy of the
theoretical threshold for SCDthre. For the purpose of
comparison, the empirical results for RMT-TT [19] are
presented as well. To numerically determine the true
threshold used as the performance benchmark, we
repeatedly calculate α̂(d) by assuming that the true source
number d is known based on a large number of
independent trials. The true threshold is the one
corresponding to a desired probability of false alarm: Pfa

= ε. In this experiment, 50 000 independent runs have
been performed, yielding 50 000 {α̂(d)}. After arranging
them in increasing order, the (Pfa · 50 000)th coefficient is
selected as the true threshold. The theoretical threshold for
SCDthre is obtained by using (28), while that for RMT-TT
is yielded by employing the right-hand side within the
braces of (19), along with (22) in [19]. The relative error is

defined as Error
�= (|ηtheo − ηsimu|)/ηsimu × 100%, where

ηtheo and ηsimu are the theoretical and simulated thresholds,
respectively. The noise is the IID Gaussian process with
zero mean and unknown variance τ .

The empirical results for the threshold comparison are
given in Table I, where the number of antennas is 30, the
number of snapshots is 40, and the DOAs of five sources
are [1.2, 5.8, 11.7, 17, 20.3]◦. It is seen that SCDthre is
superior to RMT-TT in terms of accuracy in the theoretical
threshold determination. When the number of snapshots
increases to 80 while other parameters remain unchanged,
the SCDthre algorithm is more accurate than RMT-TT, as
depicted in Table II. That is, SCDthre yields a relative error
as small as about 2%, while RMT-TT has an error of
around 10% at Pfa = 0.1. When the numbers of antennas
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TABLE I
Thresholds for SCDthre and RMT-TT at m = 30, n = 40, c = 0.75, SNR = 0 dB, and DOAs of [1.2, 5.8, 11.7, 17, 20.3]◦

Method SCDthre RMT-TT

Pfa 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
ηtheo 0.8086 0.7912 0.7586 0.7221 3.3788 3.4283 3.5324 3.6646
ηsimu 0.8540 0.8369 0.8066 0.7712 2.8454 2.9131 3.0500 3.2054
Error (%) 5.3102 5.4548 5.9439 6.3672 18.7452 17.6827 15.8158 14.3229

TABLE II
Thresholds for SCDthre and RMT-TT at m = 60, n = 80, c = 0.75, SNR = 0 dB, and DOAs of [1.2, 5.8, 11.7, 17, 20.3]◦

Method SCDthre RMT-TT

Pfa 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
ηtheo 0.9038 0.8952 0.8790 0.8609 3.4746 3.5067 3.5743 3.6601
ηsimu 0.9256 0.9170 0.9007 0.8833 3.1495 3.1954 3.2898 3.3964
Error (%) 2.3557 2.3781 2.4111 2.5401 10.3207 9.7411 8.6501 7.7652

TABLE III
Thresholds for SCDthre and RMT-TT at m = 90, n = 120, c = 0.75, SNR = 0 dB, and DOAs of [1.2, 5.8, 11.7, 17, 20.3]◦

Method SCDthre RMT-TT

Pfa 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
ηtheo 0.9357 0.9300 0.9192 0.9072 3.4733 3.4979 3.5497 3.6153
ηsimu 0.9498 0.9441 0.9336 0.9224 3.2526 3.2878 3.3588 3.4369
Error (%) 1.4777 1.4957 1.5373 1.6509 6.7865 6.3909 5.6811 5.1910

and snapshots become sufficiently large but at the same
rate c = 0.75, i.e., m = 90 and n = 120, the error of
SCDthre is less than that of RMT-TT, as illustrated in
Table III. This means that SCDthre significantly surpasses
RMT-TT in the theoretical threshold computation.
RMT-TT is able to attain asymptotic limit of detection,
i.e., in equation (11) in [(19)], only when the noise
variance τ is known a priori. When τ is unknown and
needs to be estimated, however, RMT-TT cannot attain
this asymptotic limit of detection, thereby indicating that it
is no longer optimal in this sense. This is why the
RMT-TT algorithm is inferior to the SCDthre method.

B. Effect of κ on SCDheur

Although SCDheur is able to employ the information
inherent in the distance between the signal and noise
shrinkage coefficients, it highly relies on the user-defined
parameter κ . As a result, it is necessary to investigate the
effect of κ on the behavior of SCDheur. To this end, we plot
the empirical probability of correct detection for SCDheur

versus κ under different parameter settings in Fig. 3. All
empirical results are obtained from 1000 independent
trials. It is observed from Figs. 3a–3c that when the
number of sources is d = 5, log(n) is close to the optimal κ

no matter whether cm is larger or smaller than one. The
same results can be seen in Fig. 3d–3f, where the number
of sources is d = 10. Therefore, the user-defined
parameter κ can be set as log(n), although it is not optimal.
Indeed, as demonstrated in the following simulation
results, SCDheur with κ = log(n) is considerably superior

to other methods in detection performance because it
efficiently uses the gap information between the signal and
noise shrinkage coefficients, which is not shared with the
other source enumerators.

C. Detection Performance

Now let us evaluate the detection performance of the
SCDs. For comparison, the empirical results of the
state-of-the-art algorithms for source enumeration, i.e.,
RMT-TT [19], Bayesian information criterion (BIC) [8],
LS-MDL [9], and MDL [12], are presented. In what
follows, the simulated results are based on 1000
independent trials, the probability of false alarm is set as
0.001 for RMT-TT and SCDthre, and κ = log(n) for
SCDheur.

The empirical probabilities of correct detection versus
SNR are plotted in Fig. 4, where the number of antennas is
30 and the DOAs of five sources are [1.2, 5.8, 11.7, 17,
20.3]◦. It is seen in Fig. 4a—where the number of
snapshots is 15, which is less than the number of
antennas—that the classical MDL and recently devised
BIC schemes fail because both of them are developed for
the classical asymptotic case; i.e., the number of snapshots
is larger than the number of antennas. The SCDthre has
similar behavior to that of RMT-TT, and both of them are
inferior to the LS-MDL. Because the SCDheur is able to
efficiently use the distance information between the signal
and noise shrinkage coefficients, it considerably
outperforms other enumerators. When the number of
snapshots becomes larger than the number of antennas,
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Fig. 3. Probability of correction detection for SCDheur versus κ . Blue dashed line denotes location of log(n), DOAs are [1.2, 5.8, 11.7, 17, 20.3]◦ for
d = 5, and DOAs are [0, 4.44, 8.89, 13.33, 17.78, 22.22, 26.67, 31.11, 35.56, 40]◦ for d = 10. (a) m = 30, n = 40, and d = 5. (b) m = 30, n = 240, and

d = 5. (c) m = 40, n = 30, and d = 5. (d) m = 30, n = 40, and d = 10. (e) m = 30, n = 240, and d = 10. (f) m = 40, n = 30, and d = 10.

Fig. 4. Probability of correct detection versus SNR. κ = log(n) and DOAs are [1.2, 5.8, 11.7, 17, 20.3]◦ for d = 5. (a) m = 30 and n = 15. (b) m = 30
and n = 40.
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Fig. 5. Probability of correct detection versus number of snapshots. κ = log(n) and DOAs are [1.2, 5.8, 11.7, 17, 20.3]◦ for d = 5. (a) m/n = 1.6 and
SNR = −5 dB. (b) m/n = 0.6 and SNR = 5 dB.

Fig. 6. Probability of correct detection versus angle separation �. [θ1, θ2, θ3] = [0, �, 2�] and κ = log(n). (a) m = 25, n = 30, and SNR = 3 dB.
(b) m = 50, n = 30, and SNR = −3 dB.

i.e., m/n = 3/4, all the investigated methods can properly
work. However, although the BIC algorithm can provide
accurate detection at small SNRs, it cannot attain the
probability of correction detection of one even when the
SNR is large enough. As a threshold-like detector, the
SCDthre yields similar detection accuracy to that of the
RMT-TT approach. The detection performance of SCDheur

is comparable with the LS-MDL scheme but superior to
the threshold-like and MDL schemes. It is easy to interpret
the superiority of SCDheur over LS-MDL, especially when
the number of antennas is larger than the number of
snapshots. Although the LS-MDL approach is able to use
the LS technique to enhance the estimate of the covariance
matrix of the noise subspace components, leading to an
efficient MDL variant for the general asymptotic regime, it
ignores the significant difference between the signal and
noise shrinkage coefficients. Unlike the LS-MDL method,
the SCDheur scheme is capable of exploiting this gap
information for source enumeration, thereby considerably
improving the detection accuracy, particularly when the
number of antennas is larger than the number of
snapshots.

Fig. 5 displays the empirical probability of correct
detection versus the number of snapshots. We observe
from Fig. 5a that when the number of snapshots is less
than the number of antennas, the MDL and BIC methods
cannot correctly detect the source number. In this case, the

RMT-TT scheme surpasses the SCDthre and LS-MDL
approaches but still is not as accurate as the SCDheur. For
the situation of m/n = 3/5, however, all studied methods
are able to properly enumerate the sources. Moreover,
except for the BIC scheme, all methods provide similar
detection accuracy. The SCDheur is slightly superior to the
other methods, while the SCDthre is somewhat inferior to
the other schemes. However, the probability of correct
detection of the BIC algorithm converges to one more
slowly than it does with the other methods, while it has
relatively higher accuracy at small numbers of snapshots
and antennas.

The correct detection probabilities versus the angle
separation are depicted in Fig. 6, where the DOAs of three
sources are set as [0, �, 2�]◦. It is seen in Fig. 6a that
when the number of snapshots is larger than the number of
antennas, all methods can correctly detect the source
number. However, the BIC algorithm fails to attain the
probability of correct detection of one even when the
angle separation is large enough. The LS-MDL performs
the best, while MDL is the worst. The detection accuracy
of SCDthre is close to that of RMT-TT, while the SCDheur

is slightly inferior to them. When the number of snapshots
is less than the number of antennas, nevertheless, the
MDL method cannot work properly; neither does the BIC
scheme, as demonstrated in Fig. 6b. In this setting,
RMT-TT surpasses all other schemes.
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Fig. 7. Probability of correct detection versus number of sources. κ = log(n) and DOAs are [θ1, . . . , θd] = θ (1: d). (a) m = 30, n = 20, and
SNR = 3 dB. (b) m = 30, n = 60, and SNR = −5 dB.

Fig. 8. Computational cost versus number of snapshots. κ = log(n) and DOAs are [1.2, 5.8, 11.7, 17, 20.3]◦ for d = 5. (a) m/n = 0.1 and
SNR = 0 dB. (b) m/n = 0.5 and SNR = 5 dB.

To examine the identifiability of the studied methods,
the empirical probabilities of correct detection versus the
source number are plotted in Fig. 7. Here, the DOAs of d
∈ [0,15] sources are set as [θ1, · · · , θd ] = θ(1 : d) with

θ = [ 0, 3.57, 7.14, 10.71, · · · , 50︸ ︷︷ ︸
15

]◦. (46)

It is indicated in Fig. 7a that both the SCDheur and
SCDthre outperform the other methods in identifiability for
m = 30 and n = 20. When m = 30 and n = 60, all methods
are capable of correctly detecting the source number. The
identifiability of SCDheur is still superior to the other
schemes but slightly inferior to the BIC algorithm.

The computational costs of various algorithms versus
the number of snapshots are depicted in Fig. 8. We observe
from Fig. 8 that the proposed SCDs are computationally
simpler than the RMT, MDL, LS-MDL, and BIC schemes,
especially when both m and n become large. In addition,
they require similar a computational cost to that of the
MDL approach, because the computational complexity of
the MDL scheme also mainly results from the calculations
of SCM and EVD. The simulation results agree well with
the complexity analysis for the SCD algorithms in Section
III.D. The RMT-TT depends on an iterative procedure to
estimate the noise variance, and the iterations cannot be
terminated until a stopping criterion is reached. Moreover,

the BIC scheme is more computationally intensive than the
MDL, LS-MDL, SCDheur, and SCDthre because it needs to
compute an additional likelihood term for the eigenvalues.
As a result, both the RMT-TT and the BIC methods are
more computationally demanding than the SCDheur,
SCDthre, MDL, and LS-MDL, as indicated in Fig. 8.

V. CONCLUSION

By means of the properties of the LS coefficients, two
source enumerators have been devised for the general
asymptotic regime, where the number of snapshots tends
to infinity at the same rate as the number of antennas.
Because the SCDthre does not require the estimated noise
variance in determining its theoretical threshold, it is
superior to the RMT-TT in robustness against noise
uncertainty. Compared with the SCDthre, the SCDheur is
able to efficiently exploit the distance information
between the signal and noise shrinkage coefficients. As a
result, it is more accurate than the other source
enumerators, particularly when the number of antennas is
larger than the number of snapshots. Furthermore, because
of the computational simplicity of the LS coefficients, the
SCDs are comparable with the classical MDL scheme and
superior to the BIC, LS-MDL, and RMT-TT methods in
terms of computational complexity.
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APPENDIX. PROOF OF (12) AND (13)

To prove (12) and (13), we need the following results.

Lemma 1: Let �k+1 ≥ · · · ≥ �m be the sample
eigenvalues associated with the SCM of the (m − k) × n
IID Gaussian observations with mean zero and variance τ .
As m,n → ∞ and m/n → c ∈ (0, ∞), we have

(m−k)

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

1

m − k

m∑
i=k+1

�i

1

m − k

m∑
i=k+1

�2
i

⎤
⎥⎥⎥⎥⎦ −

⎡
⎣ τ

τ 2(1 + c)

⎤
⎦
⎞
⎟⎟⎟⎟⎠

D−−−→N (02, D) (47)

where
D−−−→ denotes convergence in distribution and D is

defined in (26).

PROOF: Noting that m − k → m as m → ∞, Lemma 1
turns out to be Proposition 3.2 in [7], which was proved in
[26, 29].

It is indicated in Lemma 1 that
∑m

i=k+1 �i/(m − k) and∑m
i=k+1 �2

i /(m − k) are the unbiased estimates of τ and
τ 2(1 + c), respectively. Meanwhile, their variances
converge to zero as m,n → ∞ and m/n → c ∈ (0, ∞),
i.e.,

var

(
1

m − k

m∑
i=k+1

�i − τ

)
= τ 2c

(m − k)2
→ 0 (48)

var

(
1

m − k

m∑
i=k+1

�2
i − τ 2(1 + c)

)

= 2τ 4c(2c2 + 5c + 2)

(m − k)2
→ 0. (49)

This eventually leads to (12) and (13).
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